
Exploiting Template-Metaprogramming for Highly Adaptable
Device Drivers – a Case Study on CANARY an AVR

CAN-Driver
Christoph Steup, Michael Schulze, Jörg Kaiser

1Department for Distributed Systems
Universität Magdeburg

Universitätsplatz 2, 39106 Magdeburg, Germany

Christoph.Steup@st.ovgu.de, {mschulze, kaiser}@ivs.cs.uni-magdeburg.de

Abstract. Providing applications with a perfectly tailored device driver is es-
sential to avoid the waste of resources. This is even necessary for the broad field
of embedded systems development. However, the development of device drivers
is in general a difficult task, and supporting a portable, configurable as well
as adaptable device driver is even harder. We exploit declarative configuration
specifications, template-metaprogramming and the concept of RegisterMaps to
achieve such a device driver architecture. We evaluate the device driver ar-
chitecture, showing that the device driver’s resource usage scales with differ-
ent configurations. We compare our device driver architecture against a device
driver implementation of a hardware vendor, proving the competitiveness of our
solution.

1. Introduction
The development of device drivers is a difficult task. Allowing the use of a driver in dif-
ferent products, on different platforms, and with different application demands, requests
development mechanisms that handle the challenge of these variability. In the embed-
ded systems field, an important requirement – resource consumption – has to be treated
additionally. Thus, a minimal RAM/ROM footprint device driver is desirable that gives
applications only the functionality they need but not more. Providing a device driver that
is portable, configurable as well as adaptable and uses resources very efficiently makes
the development even harder, and in development for embedded devices, all these aspects
are of major interest.

Portability, configurability and adaptability are properties device drivers should
have, however to understand the differences between them, it needs further explanation.
In general, a portable device driver allows for using on different platforms. From the
application point of view, a need is a stable driver interface. Against such an interface
applications can be implemented. If the interface stays unchanged even in case of different
hardware platforms, application migration without code changes in the best case will
be possible, leading to decreasing costs when new platforms have to be used. Hence,
the development of such application is simplified, since no platform dependencies are
propagated from the driver level up to the application level.

The configuration of a device driver is the process of setting parameters for tailor-
ing the functionality to application demands, thus the device driver behaves as intended.

For example, if a device driver supports a polling and an interrupt feature, and an appli-
cation decides to use polling only, the interrupt functionality will be switched off. This
transition or change in the functionality is part of the adaptation process of the device
driver. Thus, an adaptable device driver has the ability to serve different demands on the
one hand arising from applications as configuration requests and on the other hand due to
features given by the used hardware platform. The latter adaptation is done automatically
without an explicit trigger by an application or user.

Developing a device driver having all preferred characteristics is as mentioned a
difficult task. However, we are not the first one that try to realize adaptable software at
all. Different development techniques like conditional compilation, object-orientation,
feature-orientation, aspect-orientation, or component-orientation approaches try to tackle
the problem, but all have their own strength and weaknesses. Because device drivers
are usually written in C or C++ we focus on techniques that are only available for these
languages.

From the developer’s point of view, conditional compilation with the help of
a preprocessor tool, mainly the C-preprocessor cpp, is easy to learn. Statements like
#define, #ifdef, #else, etc. are used for framing areas that should be included or ex-
cluded in dependence of the given condition. However, due to the annotation of driver
code with preprocessor directives the whole code is cluttered and obfuscated, leading
to hard maintainability. Furthermore, the annotations are not type safe, because it is
usual text processing only, allowing for every transformation, even those creating in-
correct sources. This is error-prone, because the developer has a different view on the
sources as the compiler. In the literature, the use of the preprocessor is often criti-
cized. For example, [Spencer and Collyer 1992] demand ”#ifdef considered harmful”
and [Lohmann et al. 2006] speak from the ”#ifdef -hell”.

An alternative development technique is object-orientation, which is also sup-
ported by C++, due to its nature as multi-paradigm language. Implementing the prefer-
able features with the object-oriented approach can be done in two directions. Firstly,
one can implement the device driver as a class library, that defers all possible configu-
ration steps to the runtime, having a dynamic, parameterizable driver, but leading to an
immense overhead concerning resource usage. Secondly, the opposite is programming all
the functionality by fine-modular, structured sub-classing. While this achieves minimal
code overhead, it is a maintenance nightmare due to the exponential class explosion with
every new upcoming feature [Gamma et al. 1995].

Device driver development with the component-oriented approach like with
UML [Object Management Group 2001] generates a resource overhead, which is at least
in the same magnitude as the dynamic, parameterizable device driver of the object-
oriented approach. A disadvantage in this context is the loose coupling of components
that lead to always have function calls. Furthermore, the compiler is not able to optimize
code above component boundaries. Thus, reasoned by the black-box concept of compo-
nents fine-granular adaptations are not designated, and applications are encumbered with
unneeded functionality.

Components as well as object-orientation try to go the way of ”separation of con-
cern”. Techniques like aspect-orientation (AOP) and feature-orientation (FOP) aim in

the same direction, but consider other mechanisms. Usually a programming language is
extended. On the one side, AOP [Kiczales et al. 1997, Tarr et al. 1999] tackles the prob-
lem of cross-cutting concerns with aspects as modularisation concept, encapsulating the
cross-cutting issue. Aspects are often related with (global) system policies like synchro-
nisations, tracing, and so on. However, in the context of developing a device driver, cross-
cutting issues arise seldomly. To allow aspects getting involved in C++ developments,
a language extension like AspectC++ [Spinczyk et al. 2002] is needed, which works as
source-to-source preprocessor having type-safety in place.

Feature-oriented programming is a technique that tackles the class explosion prob-
lem of the object-oriented approach by adding new keywords to the programming lan-
guage, allowing for describing the relation of base classes and their extensions without
directly inheriting. This enables defining multiple extensions to a given base. The config-
uration is done with the help of an additional grammar and a FOP compiler that transforms
the sources according to the configuration. FOP, first introduced by [Prehofer 1997], aims
at supporting a way to have variability in the design, and allowing the system tailoring to
applications needs in a separate configuration step [Batory et al. 2004].

All the mentioned mechanisms have either drawbacks like error-proneness, heavy
resource-consumption or need additional tools that are often in an early development state
due to their research character. Another way to reach variability and adaptability is using
techniques like generic programming [Czarnecki and Eisenecker 2000], and one form is
template-metaprogramming. Template-metaprogramming is a turing-complete functional
language that is processed by the compiler during the template instantiation phase. It al-
lows for code generation, constants calculation, type selection, etc. and enables producing
only the needed functionality having optimal fitting code at the end. However, if some-
thing goes wrong during the compilation, the compiler is highly verbose and generates a
lot of messages that can be difficult to interpret. This is a drawback for the development
in general, but there are mechanisms to address this problem: on one side by using spe-
cial programming constructs that enables customized error message generation and on the
other side by better compiler support.

For our goal, obtaining a highly adaptable device driver, we exploit the template-
metaprogramming concept. We enhance this concept, by providing declarative config-
uration descriptions that hold the application requirements on the driver, and using the
descriptions as input to the metaprograms to tailor the driver’s functionality. For driver
adaptation on the hardware side, we propose a new concept – RegisterMaps.

The rest of the paper is structured as follows. We start with the explanation of the
concept in Section 2, where we describe our basic device driver architecture first. Next,
we consider the declarative configuration in Section 2.2, the new RegisterMaps concept
in Section 2.3 and the used mechanisms of the template-metalanguage in Section 2.4.
Section 3 discusses the resulting device driver and compares it with a device driver im-
plementation of a hardware vendor. In Section 4 we conclude the paper and give a short
outlook on future research questions.

2. Concept

2.1. Basic Architecture

The architecture of our highly adaptable device driver is depicted in Figure 1. There are
three main aspects, which will be addressed in the fallowing. The definition of configura-
tion parameters are the first aspect. This definition is declaratively done by the application
developer, and in Section 2.2 we describe how the declarative specification is realized.
The Configuration component visible in the Figure 1 uses this application-dependent pa-
rameter specification for adapting the driver.

Secondly being portable, we use our RegisterMaps (short RegMap) concept,
which abstracts the access to the hardware. RegisterMaps acts as mediator between the
hardware and the hardware abstraction layer, hiding the underlying bit structure and pro-
viding an access by name. In Section 2.3 we discuss the RegisterMaps concept in detail.

To adapt the driver to an application-dependent declarative configuration, we use
template-metaprogramming. During the compilation of the driver, the compile-time in-
terface of the driver is invoked by the template instantiation process, leading to a tailored
device driver. In Section 2.4 we show which concepts of the template-metaprogramming
approach we use and how we combine it with the RegisterMaps concept. The driver’s
resulting API is highly specific to the driver and in our case specific to a CAN driver.
However to understand our proposed approach of an adaptable device driver, discussing
the API is not needed.

In the middle of the Figure 1, the interrupt handler component is depicted. It
is drawn dashed, because interrupts can be completely configured out of the driver, thus
neither RAM nor code memory is needed, letting the application the option of having a
polling- or an interrupt-driven device driver.

template free APIConfiguration

Interrupt handlers

Hardware abstraction

RegMap

API

template based configura-
tion

Interrupt handler based
interface

Hardware independent in-
terface

Hardware
compile time interface run time interface

Figure 1. Components of an adaptive driver and their interfaces.

2.2. Declaration of configuration parameters

An adaptive device driver needs input, on which parameters it should adapt. The param-
eters are given by the user through a configuration structure. This configuration structure
is the invocation parameter for the template-metaprogram at the compile-time interface,
and it is used to adapt the functionality towards the user’s requirements. However, there
must also be certain default values in the case, that the user did not specify anything.

To have a flexible, yet resource efficient configuration, we use a C++-structure,
which contains enumerations and typedefs. Both are compile-time constants, which will
have no additional costs if not used.

1 s t r u c t CANConfig : defau l tCANConf ig {
2 t y p e d e f BaudRateConf ig<
3 F CPU ,
4 SPEED 1M ,
5 SUBBITS 16
6 > baudRate ;
7
8 enum P a r a m e t e r s {
9 v e r s i o n = CAN 20B ,

10 u s e R e c e i v e I n t = f a l s e
11 } ;
12 } ;
13
14 Canary<CANConfig > : : t y p e c a n d r i v e r ;

Listing 1. Declarative specification of configuration parameters for the CAN
device driver

Getting a perfect user requirements fitting device driver, the user has to create
such a C++-structure. The structure should be inherited from a default configuration to
ensure that all configurable parameters are set at least to a default value. An example
configuration is depicted in Listing 1.

After inheriting, the user can override the default values and adjust the param-
eters according to the desired behavior. To do so, he just creates an enumeration that
contains the configuration parameters and the values he wants. In the case of the exam-
ple the enumeration is called parameters. The example overrides the used CAN version
to be CAN 2.0B and disables the receive interrupt. Also the baud rate is set to be 1
Mbit through the typedef of an additional helper structure BaudRateConfig. To apply
this declarative parameter specification to the driver, the structure is given to the compile-
time interface Canary as template parameter, resulting in an adapted device driver type
Canary<CANConfig>::type in Line 14. Next the tailored device driver can be used
through the created can driver object.

The realisation of functionality inside the driver that correspond to the passed con-
figuration parameters, depends on the used mechanism of the template-metalanguage, and
we describe the used mechanisms in Section 2.4. With the help of the metaprogramming,
additional features are possible like compile-time checks of configuration parameters.
This enables us to notify the user of misconfiguration, e. g. if he tries to use functionality
on the can driver object, which is disabled in the current configuration.

As stated in the beginning of this paragraph the configuration is only one set of
parameters, to which the driver has to adapt. The other set consists of the specification
of the current hardware. Since these can be very tedious to handle, we propose a new
concept to abstract the lowest level of hardware access in the next paragraph.

2.3. RegisterMaps – RegMaps

The goal of a RegMap is to provide an hardware independent, bit-wise access to memory
mapped I/O-registers. This allows to reference single bits within a register by name. It
also provides an abstraction mechanism that grants you hardware independence on I/O-
register level. Thus means, that the position of registers in RAM and the order of bits
inside a register are abstracted through the RegMap.

A RegMap first used in the avr-halib [Schulze et al. 2008] is realized as C++-
structure with bit-field definitions, describing the abstracted registers and the contained
bits. Bit fields are provided in the current C and C++ standards since years. Bit fields
provide a way to access single bits of a register transparently without the need for bit
mask and bit shift operations. Since the compiler does the burden of accessing the bits
correctly, the usage of a RegMap reduces the amount of possible programming errors.

As an example of a RegMap we show Listing 2. This RegMap is used to abstract
the access to the different interrupt enable flags of the used CAN hardware. An unused
bit in a register cannot be left out of the RegMap, because it is still important for the
order and position of the other bits in the considered underlying register. Declaring an
unused bit, is done by creating an unnamed bit. Accessing such unnamed bit through the
RegMap is impossible, which prevents programming errors. In Line four an example of
an unnamed bit is shown. Unnamed bits are usually padding bits or bits that are reserved
for future use e. g. in later processor revisions.

1 s t r u c t CanIntRegMap {
2 u i n t 8 t t i m e r O v e r r u n I n t : 1 ;
3 u i n t 8 t g e n e r a l E r r o r s I n t : 1 ;
4 u i n t 8 t : 1 ;
5 u i n t 8 t t i m e r O v e r r u n I n t : 1 ;
6 u i n t 8 t t r a n s m i t I n t : 1 ;
7 u i n t 8 t r e c e i v e I n t : 1 ;
8 } ;

Listing 2. An example RegMap, abstracting the interrupts of the CAN hardware.

Because a RegMap is designed to be an overlay for memory mapped I/O-registers,
and therefore, it must be placed exactly at the position where the register resides inside the
RAM. However, the compiler does not know about the special meaning of a RegMap’s
content, and if we would use the general construction process of C++ objects, it will be
constructed somewhere in RAM. To tackle this problem, we use a special mechanism the
placement new operator to overlay the RegMap exactly at the position of the respective
I/O-registers. In our case, we use a macro UseRegMap to hide the syntactical burden of
this mechanism.

Listing 3 shows the use of the defined RegMap. The example shows how the user
specified configuration parameter useReceiveInt is used to set the receive interrupt flag

1 template<typename u s e r s p e c >
2 c l a s s Canary : . . . {
3 p u b l i c :
4 Canary () {
5 . . .
6 UseRegMap (rm , u s e r s p e c : : CanIntRegMap) ;
7 rm . r e c e i v e I n t = u s e r s p e c : : u s e R e c e i v e I n t ;
8 SyncRegMap (rm) ;
9 . . .

10 }
11 . . .
12 } ;

Listing 3. Using the RegMap from Listing 2 to access the interrupt enable flag of
the CAN hardware.

supported by the RegMap. At this point, no direct hardware access is needed. However in
general, programming I/O-devices without much care leads to undefined behavior of de-
vices. Since there is difference between the access to I/O-registers and memory. Because
in case of I/O registers toggling bits multiple times in a sequence of commands is a valid
programming sequence of a device. In contrast doing so on usual memory, only the last
bit operation is important. Unfortunately, the compiler does not know about the difference
between I/O-registers and memory. If we do not support the compiler with the right in-
formation, it will optimize aggressively by merging bit operations to create optimal code,
but destroying the programming sequence of devices. This is in general a problem, and
needs to be treated. We tackle the problem using a SyncRegMap that inserts an optimiza-
tion boundary. Every operation concerning memory read or write must be finished up to
this boundary until the next operation can be done by the compiler. This ensures correct
behavior even with heavy optimization enabled. The SyncRegMap command is an alter-
native to make the whole RegMap volatile, which would have great negative influence on
code memory size and performance.

To achieve hardware independence, for every used hardware a RegMap is needed.
This is especially easy within similar families of micro-controllers, where many con-
trollers have similar registers.

Having the abstract low-level access to the hardware available, the question how
we select a specific RegMap arises. This problem is strongly coupled with the possibil-
ity to provide additional configuration parameters to the RegMap, which we provide by
template parameters. The selection problem is solved using template-metaprogramming
features of the C++-language, which we will look into in the next paragraph.

2.4. Template-metaprogramming

The concept of templates was already documented in 1990 in the ”Annotated C++ Ref-
erence Manual” [Ellis and Stroustrup 1990]. Originally it was a technique to create pa-
rameterizable data structures. The parameterization is done by specifying types that are
arguments for the data structure template instantiation. This allows the creation of generic
data structures, because there is no need to write a data structure for every possible type.
One popular example of this mechanism is the C++ Standard Template Library (STL)

vector class. Since object orientation is a way to reuse code, templates extended this
concept to provide even more code reuse.

With the growth of the C++-language and the capabilities of templates, new ways
to use templates were developed. Erwin Unruh showed the possibility to let the com-
piler calculate prime numbers as first [Unruh 1994]. However, Todd Veldhuizen was the
one who recognized the potential behind this idea. He established a new programming ap-
proach known as template-metaprogramming [Veldhuizen 1995]. As said in Section 1 the
template-metalanguage is a functional, turing-complete, side-effect-free language, that is
processed during the compilation of an application. We mainly use certain aspects of the
template-metalanguage, which are partial evaluation, template specialization and meta
control structures. These aspects will be further described in the following.

The first used mechanism is partial evaluation. This gives us the ability to compile
and include only the functions in the driver, which will be needed. For code, that is written
in C or that is not using template-metaprogramming, the compiler will translate all defined
function and put them in the resulting object file. In source code, that is parameterized
by template-metaprogramming, however this is different. For this code, the compiler
will only consider those functions that are at least called once. This saves code memory,
because unused functions will not be included in the final driver.

The second used technique is template specialization. It is used to create special
implementations of a class template for certain types like the CAN-ID class template in
Listing 4. During the template instantiation process the compiler selects a specialized im-
plementation that fits the given class template argument. We exploit this for obtaining the
right CAN-ID class template specialization in Listing 4 in Line 34. The selection behavior
is controlled by the version parameter of the CANConfig user configuration of Listing 1.
The version parameter in the example configuration CAN 20B means the usage of CAN
messages with extended IDs having 29 bits instead of 11 bits. A change of this param-
eter has an effect on the whole driver, because it leads to different used data structures.
These structures differ in size, since the CAN-IDs need either 2 bytes for CAN 2.0A or
4 bytes in case of CAN 2.0B. Through the user-configured version parameter, the needed
data structure will be automatically selected during compilation. The parameter is passed
internally to all components of the driver to ensure consistent configuration. At this point
only the driver is tailored to use the same CAN-ID in all components. However, the regis-
ter content of the hardware also differs with the used CAN version. To cope with that we
declared the RegMap to be a class template. This enables us to use the template special-
ization mechanism again to adapt to different I/O-register content dependent on the CAN
version parameter. By using both times the same mechanism, the compiler ensures that
transferring data between the driver data structures and the CAN hardware is correct by
design.

Template specialization can also be exploited to create meta control structures like
if-then-else for types. This opens the possibility to change whole block of functionality
dependent on configuration parameters. For example, if a driver is configured only for
sending messages, the receive functionality is not needed at all and is not existent in the
final driver. In Listing 5 we show the selection of functionality for the receive inter-
rupt behavior. The Canary template-metaprogam, here implemented as a class, inherits
from the if then else class template. That meta control structure selects the second or the

1 / / S u p p o r t e d Can v e r s i o n s
2 enum V e r s i o n s {
3 CAN 20A ,
4 CAN 20B
5 } ;
6
7 template<V e r s i o n s v e r s i o n >
8 c l a s s CAN ID ;
9

10 / / S p e c i a l i z a t i o n f o r t h e CAN 2 . 0 A CAN−ID s p e c i f i c a t i o n
11 template<>
12 c l a s s CAN ID<CAN 20A> {
13 p u b l i c :
14 t y p e d e f u i n t 1 6 t IdType ;
15
16 enum C o n s t a n t s {
17 i d L e n g t h =11
18 } ;
19 . . .
20 } ;
21
22 / / S p e c i a l i z a t i o n f o r t h e CAN 2 . 0 B CAN−ID s p e c i f i c a t i o n
23 template<>
24 c l a s s CAN ID<CAN 20B> {
25 p u b l i c :
26 t y p e d e f u i n t 3 2 t IdType ;
27
28 enum C o n s t a n t s {
29 i d L e n g t h =29
30 } ;
31 . . .
32 } ;
33
34 t y p e d e f typename CAN ID<CANConfig : : v e r s i o n > : : IdType IdType ;

Listing 4. Template specialisations of the CAN ID type depending on the version

third parameter dependent on the value of the first one. Thus, the Canary inherits from
ReceiveInterrupt only if useReceiveInt is true in the configuration user spec. This mecha-
nism has the advantage, that features that are not present in the driver due to configuration
does not cost anything (no code memory and no RAM).

The template-metaprogramming can be further used, to adapt a driver to hardware,
where certain hardware features are not present. In such a case, a feature must be emulated
by software. To only include the software emulation layer when it is needed, template
specialization can be used to decide the usage. The compiler chooses the optimal fitting
specialization for the platform. Since partial evaluation creates only the functions that are
needed, and unused specializations are not considered and therefore not present in the final
driver. An example for this would be a CAN hardware, which has no support for hardware
ID filters. On such hardware, a device driver has to emulate the ID filter functionality in
software if the application demands this. If the emulation is once implemented, it can
be used on all hardware platforms that do not provide the feature. However platforms

1 template<typename u s e r s p e c >
2 c l a s s Canary : p u b l i c i f t h e n e l s e <
3 u s e r s p e c : : u s e R e c e i v e I n t ,
4 R e c e i v e I n t e r r u p t ,
5 N o R e c e i v e I n t e r r u p t
6 > {
7 . . .
8 } ;

Listing 5. Using a template meta control structure to (de)activate the use of the
receive interrupt

providing the feature do not need the emulation and the driver is created without it. With
this mechanism used, creating a flexible, reusable and resource-optimal driver architecture
is possible.

3. Evaluation
This paragraph deals with the results of the implementation. To show the advantages of
our approach we compare the size of a set of example applications. On one side we use our
highly adaptable device driver and on the other side an implementation from Atmel [at9],
which is written in plain C.

We consider three different examples, describing usual use cases. All applications
use CAN 2.0B, because the Atmel driver has no means to adapt itself to use CAN 2.0A
only. The evaluated examples are: sending one message, receiving one message using
polling and receiving one message using interrupts.

Canary Atmel
example application text ram text ram
Sending 1248 17 4214 21
Receiving polling mode 1650 21 4168 21
Receiving interrupt mode 1950 29 n.a. n.a.

Table 1. Program sizes and used RAM for different example applications

The compilation of all applications was done with gcc in version 4.3.4 and opti-
mization switched on with -Os, leading to size optimized executables. For our driver we
provided additional compilation flags concerning C++ code generation, which are: -fno-
exceptions and -fno-rtti. These disable exception handling and runtime type informations,
which are not used in our driver.

The result are contained in Table 1. It is clearly visible that our driver implemen-
tation is much more efficient in terms of code size. The RAM usage of our device driver
is mostly better, but the interrupt driven version has an 8 byte overhead due to a delegate
style interrupt handler. This delegate allows us to switch the interrupt callback at runtime,
which is special feature that we offer. The RAM usage of the Atmel driver is constant,
because it is not configurable and therefore uses the same data structures and functions
for all examples. The interrupt example could not be measured, because, the driver from
Atmel has no means to support interrupts natively.

To show the potential of our approach, we give additional measurements. As
discussed, our driver can be configured in many ways. One of this is the minimal configu-
ration of the third example supporting CAN 2.0A only. Doing so, saves additional 16.4%
of code size and 19% RAM usage.

4. Conclusions and Outlook
In this paper we presented how template-metaprogamming is exploited for creating highly
adaptable device driver. We applied our concepts for the development of a CAN device
driver for an embedded platform, being adaptable, configurable and portable. The user has
the possibility to configure the driver by using declarative descriptions. This descriptions
are interpreted by template-metaprograms during the template instantiation phase. To
abstract from low-level hardware issues, we introduced a new concept – RegisterMaps –
allowing the development of portable driver architectures.

We evaluated the resulting driver architecture against a plain C implementation of
a vendor’s hardware driver. Our driver shows always better results in terms of code size
and RAM usage. This is caused by its high configurability, because it contains only the
needed functionality, but not more.

In the future we will apply our concepts on other types of devices to prove its
generality. Furthermore, we will do measurements covering a broader range of configu-
rations.

Acknowledgement
This work has partly been supported by the Ministry of Education and Science (BMBF)
within the project “Virtual and Augmented Reality for Highly Safety and Reliable Em-
bedded Systems” (VierForES).

References
AT90CAN32/64/128 software library. online, http://www.atmel.com/dyn/
resources/prod_documents/at90CANLIB_3_2.zip. [(online), as at:
31.03.2010].

Batory, D., Sarvela, J. N., and Rauschmayer, A. (2004). Scaling Step-Wise refinement.
IEEE Transactions on Software Engineering, 30:355–371.

Czarnecki, K. and Eisenecker, U. (2000). Generative Programming: Methods, Tools, and
Applications. Addison-Wesley Professional. Published: Paperback.

Ellis, M. and Stroustrup, B. (1990). The annotated C++ reference manual. Addison-
Wesley, Reading Mass.

Gamma, E., Helm, R., Johnson, R. E., and Vlissides, J. (1995). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., and Ir-
win, J. (1997). Aspect-Oriented programming. In Aksit, M. and Matsuoka, S., edi-
tors, Proceedings of the 11th European Conference on Object-Oriented Programming
(ECOOP ’97), volume 1241 of Lecture Notes in Computer Science, page 220–242.
Springer-Verlag.

Lohmann, D., Scheler, F., Tartler, R., Spinczyk, O., and Schröder-Preikschat, W. (2006).
A quantitative analysis of aspects in the eCos kernel. In Proceedings of the 2006
EuroSys conference on - EuroSys ’06, pages 191–204, Leuven, Belgium.

Object Management Group (2001). Complete uml 1.4 specification.

Prehofer, C. (1997). Feature-Oriented programming: A fresh look at objects. In Prehofer,
C., editor, ECOOP’97 — Object-Oriented Programming, volume 1241, pages 419–
433, Berlin/Heidelberg. Springer-Verlag.

Schulze, M., Fessel, K., Werner, P., and Steup, C. (2008). AVR-halib project website.
online, http://avr-halib.sourceforge.net. [(online), as at: 25.02.2010].

Spencer, H. and Collyer, G. (1992). #Ifdef considered harmful, or portability experience
with c news. In the USENIX Summer 1992 Technical Conference, page 185–197.
USENIX Association Berkley.

Spinczyk, O., Gal, A., and Schröder-Preikschat, W. (2002). AspectC++: an aspect-
oriented extension to the c++ programming language. In Proceedings of the Fortieth
International Conference on Tools Pacific: Objects for internet, mobile and embedded
applications, pages 53–60, Sydney, Australia. Australian Computer Society, Inc.

Tarr, P., Ossher, H., Harrison, W., and Sutton, S. (1999). N degrees of separation: multi-
dimensional separation of concerns. In Proceedings of the 1999 International Con-
ference on Software Engineering (IEEE Cat. No.99CB37002), pages 107–119, Los
Angeles, CA, USA.

Unruh, E. (1994). Prime number computation. ANSI. ANSI X3J16-94-0075/ISO WG21-
462.

Veldhuizen, T. L. (1995). Using c++ template metaprograms. C++ Report, 7(4):36–43.
Reprinted in C++ Gems, ed. Stanley Lippman.

