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What are the impairments
of predicatbilty ?

Load Failures

= &

Network contention transmission errors,
Arbitration conflicts lost messages
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Predictability in random access networks:

probabilistic

very low overhead and latency in low load conditions
very flexible wrt. extensibility
thrashing in high load situations

Collsion avoidance

balances the latency against the collision probability
maintains a good average throughput in medium load situations
may adapt to high load conditions

Consistent arbitration with Collision Resolution

needs support from the physical layer

maintains a constant throughput in all load conditions
supports sophisticated fault handling

Embedded Networks 11 4
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Controlled Access by Collision Exclusion:

Master/Slave

all control information in one place
maximum of control
easy to change

Global Time

Easy temporal co-ordination
Minimal communication overhead

Token-based

Decentralized mechanism

Integration of critical and non-
critical messages




transfer of data blocks
flow control

fault and error handling
message re-transmissions

: : fault and error treatment, re-transmission
Logical Link LL -layer flow control

Media Access MAC -layer access control, arbitration control




7 < > 7 application layer
— A s —
Service : | | | i i i i
Access O O—O O—O >—3O _
Point O 2 | < > 2 link layer
(SAP) l I l
~ 1 = ~ « . ~ e 1 o physical layer
|:> Assumption: homogeneous, closed system
> Not all layers are necessary (e.g. routing)

Empty layers in the ISO/OSI- model

> Higher layers directly access the SAPs of lower layers.

> Efficiency improvement

> Direct mapping of layer 7 services to layer 2 functionality.




CAN-Bus
Controller
Area Network




Start of the Bosch internal project to develop an in-
'm vehicle network

1m Official introduction of CAN protocol

First CAN controller chips from Intel and Philips
1%7 Semiconductors

1%’ Bosch’s CAN specification 2.0 published

CAN Kingdom CAN-based higher-layer protocol
199’ introduced by Kvaser

CAN
Milestones

CAN in Automation (CiA) international users and
1992 manufacturers group established

1m CAN Application Layer (CAL) protocol published by
CiA

1 992 First cars from Mercedes-Benz used CAN network

1 993 ISO 11898 standard published

1st international CAN Conference (iCC) organized
1994 . cn

1W DeviceNet protocol introduction by Allen-Bradley

ISO 11898 amendment (extended frame format)
19% published

1% CANopen protocol published by CiA
Development of the time-triggered communication
m protocol for CAN (TTCAN)
|
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Developed by BOSCH, http://www.semiconductors.bosch.de/pdf/can2spec.pdf

CAN Specification 1.2
CAN Specification 2.0

Difference between the specifications mainly is:

- the different lenth of message identifiers (CAN-ID)
Standard CAN: 11 Bit IDs (defined in CAN 2.0 A < 1.2)
Extended CAN: 29 Bit IDs (defined in CAN 2.0 B)

CAN-Controller Implementations:
Basic CAN: 1 Transmit + 1 Receive (Shadow) Buffer
Extended CAN: 16 Configurable Transmit/Receive Buf.
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Basic CAN properties

Prioritised messages

Bounded and guaranteed message delay for the highest priority message.

Constant troughput in all load situations

Error detection and signalling in the nodes.
- Automatic re-transmission.

- Fail silent behaviour of nodes.

- Consistent message delivery.

* Multicast with time synchronization.

11



Layers defined by the CAN standard

Data Link Layer
LLC

Acceptance Filtering
Overload Notification
Recovery Management

Supervisor

Fault

MAC Confinement

Data Encapsulation/ Decapsulation
Frame Coding (Stuffing/Destuffing)
Medium Access Management

I
Error Detection
Error Signalling
Acknowledge
ﬁ

Serialization /Deserialization

Physical Layer

Bit Encoding / Decoding Bus Failure

Bit Timing
Synchronization

Driver/Receiver Characteristics

LLC = Logical Link Control
MAC = Medium Access Control

Embedded Networks 11 12 J. Kaiser. IVS-EOS



CAN differential transmission scheme

CAN CAN

CAN

node node

node

CAN_H

128 Q /m 128 Q
T~ CAN_L

CAN termination resistors

: CAN_H
S E—
\ / CAN_L

1,5

v

recessive dominant recessive
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The CAN physical layer

physisal
connection

logic
equivalent

physisal Bus connection

CAN
driver

~\
A4

| vee

by “Wired And”

0 = dominant level
l 1 =recessive level
O cr o T o

5
s

~\

A4
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CAN Bit Synchronisation

node node

CAN hIIIIIIIIIIIIIIIII IJ

Bus

[ [ [ [
» > > »

)

A

< < < &
< < < <«

After a certain time, all nodes have seen the value of a bit

Bit rate dependend on the length of the bus

Bit Monitoring

Embedded Networks 11 15 J. Kaiser. IVS-EOS



Bitzeit = 1/nominal bit rate

A
v

signal propagation-

segment ) .
*—> < <
synchronization- phase phase
segment buffer buffer
segment segment
1 2

sample (read) point

Lange der Zeitsegmente werden in Vielfachen einer aus der Oszillatorperiode
abgeleiteten Zeiteinheit (time quantum) spezifiziert:

synch.-segment 1 time quanta

sig. propag. seg. 1...8 time quantas

phase buffer seg. 1 1...8  time quantas

phase buffer seg. 2 1...8  time quantas
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CAN transfer rates in relation to the bus length

Ta= Trr.delay * Tiine delay

Trrdelay ~ 100 NS
(driver, transceiver, comparator logic, etc.)

Tiine detay ~ 0,2 M/ ns twisted pair

Bitrate max. network

(kBits/s) extension (m)
1000 40
500 112
300 200
200 310
100 640
50 1300

Embedded Networks 11
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CAN payload

payload # of bytes Std. frame extended frame
kbits/sec kbits/sec

0 - -

1 71,1 61,1
2 144,1 122,1
3 216,2 183,2
4 288.3 244.,3
5 360,4 305,3
6 432,4 366,4
7 504,5 427,5
8 576,6 488,5

18




The CAN MAC and Logical Link Control (LLC) levels

Frame types and formats:

- Data Frame normal data transmision initiated by the sender

- Remote Frame participant requests frame which is sent with the identical frame ID from
some other participant.

* Error Frame participant signals an error which it has detected

« Overload Frame used for flow control. Results in a delayed sending of the subsequent frame.

19




inter frame

RTR-Bit

inter frame

Space l data frame space
11 6 0-64 15 or
Y overload-
frame
< T% g Y > > R aa < »
start of abitration .01 field data field CRC Ack end of
frame field ;S T field ¢eolg frame

Arbitration —m

Field Standard Format and Extended Format Field
or
IDE / r1 ro DLC3 DLC2 DLCA DLCO CRC
Field
reserved Data Length Code

bits
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Standard Format SF (compatible to CAN Spezifikation 1.2)

arbitration field control field data

) T T

0 DLC

11-Bit Identifier

MmO w
-3
O

Extended Format EF (CAN Spezifikation 2.0)

arbitration field control field data
r > | < > r

S S |1 R

o 11-Bit Identifier R|(D 18-Bit Identifier 7|7 |r DLC

F R|E r|1/0
RTR: Remote Transmission Request. In Data Frame: RTR = dominant. In Remote Frame: RTR = recessive.
IDE: Identifier Extension. In the SF this is part of the control field, has a dominant value but is not interpreted.

In the EF it is part of the addressing field, has a recessive value and causes the format to be recognized as EF.

SRR: Subsitute Remote Request.Always recessive, replaces RTR in the EF for compatibility reasons.
DLC: Data Length Control. 0-8 Byte.
ro, ri: reserved
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Arbitration on a CAN-Bus

0 = dominant Station C Station A
1 = recessive stops stops
A
® —3 0 0] x | x| x| x1 x ,
c |-
CAN-Bus U ) 0 X X X X X X
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wait for interframe arbitration

all bits received space

?

SOF

receive
state

netx arbitration bit

compare bus level
with the level of the bit put

error state

lost arbitration: on the bus bit error:
sent: recessive level sent: dominant
received: dominant level received: recessive

all bits
put on the bus

send Y

A

?
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CAN Standard Data Frame

RTR-Bit

inter frame ‘

inter frame

Space l data frame

space

11 6 0-64

or
overload-
frame

X

startof abitration ;0.0 field data field
frame field o T

A

U
/
/

CRC Ack endof
field field frame

Arbitration —peig——— CONTROL FIELD ——————————————— P Data
Field Standard Format and Extended Format Field
or
IDE / r1 ro DLC3 DLC2 DLCA DLCO CRG
Field
reserved Data Length Code
bits
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CRC field acknowledge end-of-frame pattern

field
ple
1 Bit 1 Bit 7-Bit
dom. |recess. recess.
—’.
F—

ACK-Slot
ACK delimiter

positive anonymous acknowledgement (Broadcast !)

receivers that correctly received a message(a matching CRC sequence) report this in the ack-slot

by superscibing the recessive bit of the sender by a dominat bit. The sender switches to a recessive
level.

B> Message is acknowledged by a single correct reception on a correct node.
B> Systemwide data consistency requires additional signalling of local faults.
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L 11 recessive bits _|

| 1

inter frame space

CRC field Ack-field end of frame

» )

7 bit min. 3 bit

A

1 bit 1 bit

dom. recess. ‘ ‘ ‘ ‘ ‘ ‘

recess.
ﬂ—

Goals:

1. Detecting AND signalling the error within the actual fame in which it occured
2. ldentifying the node which may have caused the error.

3. Creating a systemwide view on the reception state of the message.

Approach: End of frame pattern consisting of 7 recessive bits.
1. Any error detection is signalled by putting a dominant bit on the bus.
2. An out-of-sync node, not being aware of the EOF sequence will signal
an error at position "6".
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Frame . Inter-Frame Space _ Frame

v

1
1
P
1
1

-—yY--

sof

v

I1

N
| A

A

Y

v

Intermission Bus
Idle

Intermission: no data- or remote Frame may be started

Intermission 1: active overload Frame may be started
Intermission 2: re-active overload frame (after detecting a dominant bit in 11)
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Error Detection and Error Signalling in CAN

Bit-Stuffing enforces the following rule:

Violation of the Bit-Stuffing Rule: 1|9 3| 4 5 n A sequence of 5 identical bit levels

Used for Error Detection and Signalling is followed by a complementary bit level

CAN Data Frame

\ 4

ACK End Of Frame (EOF)
le + pattern |
Arbitration
Cntrl. .... .Data.... CRC 1 2 3 4
validation point
for receivers
validation point
for the sender
I
Embedded Networks 11 78 J. Kaiser, IVS-EOS




1.) Monitoring: Sender compares the bit sent with the bit actually on the bus.
Type of faults: local sender faults
Error detection: sender based

2.) Cyclic Redundancy Check:
Type of faults: 5 arbitrarily distributed faults in the code word,
burst error max. length 15.
Error detection: receiver based

3.) Bitstuffing:
Type of faults: transient faults, stuck-at-faults in the sender
Error detection: receiver based

4.) Format control:
Type of faults: the specified sequence of fields is violated.
Error detection: receiver based

5.) Acknowledgment:

Type of faults: no acknowledge
Error detection: sender based, sender assumes local fault.

29




Bit monitoring: An error will not be detected if

- the sender is correct and monitoring doesn't detect an error

- all other nodes receive the same bit pattern which is different from that of the
sender and contains a non-detectable error.

Bit-stuffing: double errors within 6 bits will not be detected

CRC: difference between frame sent and received is a multiple of the generator
polynome.

Frame errors: the frame is shortened or additional bits are added. At the same
time a correct end-of-frame sequence is generated.

Unruh, Mathony und Kaiser:”Error Detection Analysis of Automotive
Communication Protocols”, SAE International Congress, Nr. 900699, Detroit, USA, 1990

Scenario:

nodes: 10, Bit error rate: 2¢ 102, message error rate: 103

risk of undetected errors: 4,7 » 10-14

When the number of nodes increase, the probability of undetected errors decreases.
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CAN error frame

IFS or overload frame
data error field

dominant recessive

A

6-Bit error flag 8-Bit error frame

EOF sequence

error flag superposition
6 - 12 Bits

Embedded Networks 11 31
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Error frame resulting from a sender fault

1 2 3

SP X
(sender)

SPY
(receiver)

SPZz
(receiver)

bus level

\ 2
A
Y-
A
4

mOow

6 Bit ' 6 Bit ' 8 Bit 3 Bit

IFS

-—--¥-F-----F--1---=--F-----—-—-- - ===} - 'S

%+ - k-
v

SL: send level
error frame

time to re-transmit a faulty message frame: min. error recovery time: 23 bit times
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Error frame resulting from a receiver fault

SP X
(sender)

SL: send level

SPY

(receiver)

SPZ
(receiver)

bus level

»nOLun
A
=
mwv
mi
v
TTRKTTT AT
o
=
= o
B L
S
o2 (o]
o
o
1YY
v
A
=
m
N
v
IIIII Y-
x T
Q0
< =
T
k)
o
2
(&)
o
(@]

time to re-transmit: min. error recovery time: 20 bit times

J. Kaiser, IVS-EOS
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Problem: Faulty component may block the entire message transfer on the CAN-Bus.

Assumption: 1. A faulty node detects the error first.
2. frequently being the first which detects an error --> local fault in the node

approach: error counter for receive and transmit errors. If error was first detected by the
node, the counter is increased by 8-9.
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States of a CAN node:
* error active
* error passive

RxCNT: Value of the receive counter
* bus off

TxCNT: Value of the transmit counter

RxXCNT > 127 OR TxCNT > 127

/\

TXCNT > 255

error bus off
passive

error
active

RXCNT <127 AND TxCNT < 127

Reset + configuration + reception of 128 x 11 recessive Bits (i.e. 128 correct EOF recognitions)
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CAN bus Error Handling - Transmit Error Counter

Value
255 BUS OFF

error passive state

127
96 Warning Limit
ERROR ACTIVE error active state
3 > Time
|
Embedded Networks 11 36 P—




Analysis of CAN inaccessibility

CAN Data Frame

Interframele o Interframe
Space ) data frame Space
/ or
1 2 1 6 0 -64 15 / 1l1l1] 7 3 overload frame
Y /
Startof | arbitration control data field cns
Frame field field e ACK | End of
field | Frame

longest possible message:

Format-Overhead: 67 bit times
Data: 64 bit times

Bitstuffing (max): 23 bit times

total: 154 bit times
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Data Rate 1 Mbps , Standard Format

Scenario tacc (US)

Bit Errors 155.0 < worst case
Bit Stuffing Errors 145.0 .

CRC Errors 148.0 single
Form Errors 154.0

Ack. Errors 147.0

Overload Errors 40.0

Reactive Overload Errors 23.0

Overload Form Errors 60.0

Transmitter Failure 2480.0 «<— worst case
Receiver Failure 2325.0 multiple

P. Verissimo, J. Ruffino, L. Ming:” How hard is hard real-time communication on field-busses?”
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Predictability of various Networks*

Worst Case Times of Inaccessibility* tinacc (MS)
ISO 8002/4 Token Bus (5 Mbps) 139.99 i
ISO 8002/5 Token Ring (4 Mbps) 28278.30 ;‘:gf:c'g;sed
ISO 9314 FDDI (100 Mbps) 9457.33
______ Profibus (S00Kbps) 7480
CSMA/CD unbounded
CSMA/CA stochastic CSMA
Protocols
CAN-Bus (1Mbps) 2.48

* P. Verissimo, J. Ruffino, L. Ming:” How hard is hard real-time communication on field-busses?”
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High level issues

Routing: How does a message reach a receiver ?
CAN: Broadcast, message subjects

Filtering: How can the receiver only receive those messages selectively
in which it is interested in ?

CAN: message filters

Embedded Networks 11 40 J. Kaiser. IVS-EOS




The CAN communication modell

write read

Send/

' Comm.
Receive Contrl.

Register

Producer/Consumer,
Model of a distributed memory

I: Transmit Request
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CAN-ID

29/11 0

node a

node b

node n
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‘ Event-triggered communication with low latency

‘ Priority-based arbitration with collision resolution for guaranteed throughput

‘ error handling:
anonymous positive acknowledge

negative ack. in case of an error (system wide messaging)
identification of faulty nodes

immediate synchronization and retransmission

‘ content-based addressing with a high flexibilitx (system elasticity)
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