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Summary 
 

An algorithm is described to discriminate automatically between saccades and slow 

eye movements. Sampled data of the eye position have been used to calculate the 

momentary acceleration of the eye. The higher acceleration values of the saccadic eye 

movements as opposed to the slow compensatory or pursuit eye movements served 

to differentiate between the two. The method is demonstrated by search-coil data in 

squirrel monkeys. 
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Introduction 
 

Vestibular or optokinetic nystagmus is a sequence of compensatory "slow" reflex eye 

movements and rapid backward movements (saccades). The saccades reset the eye 

near its initial position. To achieve the response function of the pursuit movement of 

the OKN system with respect to a given moving stimulus, the backward saccades 

have to be rejected from the analysis. In the past numerous attempts have been made 

to separate the two components of eye movements automatically. In most of the 

algorithms developed the eye angular velocity signal Ve was used. For example, Wall 

and Black (1981) detected successive extreme eye positions and calculated Ve in 

between. Barnes (1982) introduced convenient Ve thresholds; Inchingolo and Spanio 

(1985) searched for the peak velocity and defined the beginning and end of a saccade 

a few data points before or after the peak. Because the Ve  ranges of the quickest slow 

eye movements and the slowest parts in the saccades overlap, Ve is not a good signal 

for distinguishing the two components of eye movements. All the methods described 

required at least the interaction of an operator to use the high pattern discrimination 

ability of the human visual system. Recently Arzi and Magnin (1989) described an 

automatic algorithm to overcome the disadvantages mentioned. The authors 

introduced a membership function of unity (1) for slow and zero (0) for saccadic eye 

movements. To achieve this membership function a priori information is necessary. 

This information was obtained from the global pattern of the velocity response. In an 

iterative procedure the maximal discrimination had to be calculated. This method is 

useful for regular responses of the eye movement system, for example sinusoidal Ve 

responses to vestibular stimulation, but it does not work when the response is 

unpredictable, as in optokinetic afternystagmus OKAN, for example, with its altering 

and unforeseeable time course. 

Since the change in Ve at the beginning and end of the saccades, which are 

ballistic movements, is faster than with slow eye movements, we tried to use the 

different ranges in acceleration for discrimination. 
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Method 
 
Acceleration signal processing 

The acceleration signal was produced from sampled eye position data stored on 

file by lowpass filtering and calculating the second derivative. For lowpass filtering 

finite impulse response (FIR) filters were used (Rabiner & Gold, 1975). FIR filters with 

a linear phase have symmetrical coefficients which can be written as : 

 

 h(0) = 2 ⋅ fc / fs , h(M) = h(-M) = [ sin(h(0) ⋅  π ⋅  M ] / (π ⋅ M ) ,  

 

where fc and fs represent the lowpass cutoff frequency and sample frequency 

respectively; M is an integer. To diminish the effects of the finite number of coefficients 

a Hamming window was used. To maintain the low-pass filtered data the position data 

were convolved with the normalized N = 2 M + 1 filter coefficients thus achieved.  

The second derivative was obtained by convolution of the filtered signal with the 

kernel { 1, -2, 1 } divided by the square of the sample interval representing the 

repeated differentiation of a 2-point first-derivative approximation.  

Because of the linearity of these operations filtering and differentiation can be 

combined and result in a convolution kernel of N + 2 coefficients for calculation of the 

filtered second derivative. 

When cutoff and sample frequency have been selected, the properties of the 

filter are determined by the number of coefficients. With increasing M, the frequency 

response is steeper around the cutoff frequency but the step response exhibits more 

overshoot. Because the filtered second derivative is only used for the detection of 

saccades of different amplitudes, the FIR filter has to be optimized with respect to the 

step response overshoot. For a small but tolerable step response overshoot, the 

integer M could be well approximated by M = INT ( 0.7 ⋅  fs / fc ). Depending on the 

quality of the eye position data, the lowpass cutoff frequency fc has to be determined 

(with a selected sample frequency fs) so that a sufficient signal-noise ratio in the 

filtered second derivative for detection of saccades is obtained, as demonstrated in 

Fig. 1 (trace 3) for the absolute value of acceleration. This signal to noise ratio is given 

by the noise of the position signal itself but depends in addition on different factors 

such as the kind of signal prefiltering, resolution of the analog-digital conversion and 
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the sample frequency. Once the best cutoff frequency is determined for the eye 

movement recording method used, FIR filter coefficients using the given approximation 

for M can be calculated for different sample frequencies. Applying the electromagnetic 

scleral search-coil technique (Robinson, 1963) for measuring eye position, as in the 

data demonstrated, a cutoff frequency of 25 cycles ⋅  s-1 was found to be convenient. 

Sample frequency was 250 samples ⋅ s-1. Comparable results with respect to the 

signal to noise ratio of |Ae| were achieved using sample frequencies between 166.7 

and 1000 samples ⋅ s-1.  

 

Saccade detection algorism 

The algorithm using Ae values for discrimination of the two components of eye 

movements will be explained on the basis of Fig. 1. As an example we used a section 

of an eye movement registration which includes a saccade superimposed by a small 

second one (arrow in trace 1). Traces 2 and 3 show the velocity and the absolute 

value of acceleration respectively. The parameters used were fs = 250 samples ⋅ s-1,   

fc = 25 cycles ⋅ s-1, M = 7. To become independent of the direction of the saccade and 

avoid zero crossings, we used the absolute value of acceleration |Ae|. 

In this kind of representation the saccadic eye movements normally show a two-peak 

time course; the first saccade, which is superimposed by the small one, exhibits a four-

peak positive time course.  

The beginning of a saccade is determined by the first traverse of a given 

acceleration threshold (dashed line in trace 3) when the absolute values of 

acceleration |Ae| in a succeeding time interval ΔT1 - corresponding to                          

K1 = INT ( ΔT1 ⋅  fs ) samples - are overthreshold. In all data presented, ΔT1 = 12 ms, 

corresponding to K1 = 3 in this example. With respect to the filtering used we found 

good values for the threshold between 800 and 1000 degrees ⋅ s-2. Thus normal and 

small saccades can be detected reliably. Because of the fact that |Ae| within a single 

saccade can fall below the threshold, a criterion had to be defined whether this 

indicates the onset of a succeeding slow component or not. Accordingly, after such a 

traverse below the threshold, we tested |Ae| in a time interval ΔT2 - corresponding to  

K2 = INT ( ΔT2 ⋅  fs ) samples. If |Ae| is subthreshold for all K2 samples, they belong to 

the slow component of the eye movement and the fall below the threshold was the end 

of a saccade. For all samples which are subthreshold, the membership function is set 

at unity (1). When the acceleration crosses the threshold before K2 subthreshold 
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samples are detected, the acceleration values belong to a saccade and the 

membership function is set at zero (trace 4). A ΔT2 of 16 ms was chosen 

corresponding to K2 = 4 samples. The time window ΔT2 represents a refractory period. 

The membership function was stored on file. Slow components of position or 

velocity for example can be achieved by comparing this data and the membership 

function at unity. When the latter is zero, position or velocity data were not discarded 

but set at a never occurring value. Thus a confusing data reduction can be avoided. If 

the saccadic components are the point of interest, the comparison has to be carried 

out in the other way. Slow-phase components of traces 1 and 2 are shown in traces 5 

and 6 respectively. 

If we define the membership function on the basis of threshold crossing, a 

saccade represented by zero in this function can be over- or underestimated in its 

duration, as mentioned above. When interest is only directed to detecting saccades in 

eye movement recordings, the membership function so defined works well. If 

saccades are to be rejected, it could be necessary to spread the saccade in its 

representation in the membership function because of the asymmetry in the rise and 

fall of a saccade in the acceleration time course. For this we used additional time 

windows ΔT3 and ΔT4 before and after |Ae| crossed the threshold at the beginning and 

end of a saccade respectively. With respect to the sample frequency, these time 

windows can be represented analogously to K1 and K2 by numbers of samples K3 and 

K4. For these samples the membership function is also set at zero. 
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Fig. 1: A section of an OKN registration example to explain the operation of the 
saccade detection algorithm. Data were  measured in a squirrel monkey (Saimiri 
sciureus) by means of the electromagnetic search coil technique. Trace 1 shows the 
eye position signal. Sample frequency fs = 250 samples ⋅ s-1. The first saccade is 
superimposed by a small one. In traces 2 and 3 the velocity Ve and absolute value of 
acceleration |Ae| are plotted respectively, lowpass cutoff frequency fc = 25 cycles ⋅ s-1, 
M = 7. Trace 3 shows the selected threshold of 1000 deg ⋅ s-2. In trace 4 the 
membership function defined by the transitions through the threshold is plotted. Using 
this function the slow-phase position and velocity from traces 1 and 2 are plotted in 
traces 4 and 5 respectively. 
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Fig. 2 (a): Sinusoidally modulated stimulus function; horizontally moving stripe pattern 
of 15 degrees period. Traces 1 and 2 show the eye position and velocity respectively. 
Sample frequency fs = 166.7 samples⋅s-1, lowpass cutoff frequency fc = 25 cycles⋅s-1, 
M = 5. In trace 3 the slow-phase velocity is plotted using a membership function 
defined by the traverses through the acceleration threshold. The last parts of 
particularly asymmetric saccades are visible (arrows). Using time windows ΔT3 = 18 
ms and ΔT4 = 78 ms, the membership function is optimized with respect to 
suppression of saccadic components. The remaining slow-phase component of the 
eye movement is seen in trace 4.  
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Fig. 2(b): After horizontal optokinetic stimulation stopped, OKAN is determined 
exclusively by the time course of the internally stored velocity signals. The transition 
from OKAN I to OKAN II is selected as an example. Sample frequency 
fs = 250 samples ⋅ s-1, lowpass cutoff frequency fc = 25 cycles ⋅ s-1, M = 7, time 
windows ΔT3 = 16 ms and ΔT4 = 80 ms. Using the described algorithm the slow-phase 
eye position is plotted in trace 3. 
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Results 
 

Applications of the method described are demonstrated for a different types of 

stimulus responses in Fig 2. In Fig. 2a optokinetic nystagmus during sinusoidal 

modulation of the stimulus velocity around 46 deg ⋅ s-1 is shown. Sample frequency     

fs = 166.7 samples ⋅ s-1, lowpass cutoff frequency fc = 25 cycles ⋅ s-1, M = 5. In trace 3 

the slow-phase velocity using a membership function defined by the transitions 

through the absolute acceleration threshold of 1000 deg ⋅ s-2 is plotted. The last parts 

of the saccades can be seen (arrows). Spreading the saccades in their representation 

in the membership function by ΔT3 = 18 ms and ΔT4 = 78 ms, corresponding to K3 = 3 

and K4 = 13 samples before and after the saccade crosses the threshold, results in an 

optimized membership function for saccade rejection. The application of this optimized 

function is seen in trace 4. 

In Fig. 2b eye movements in the dark after optokinetic stimulation as a result of 

the internally stored velocity value are seen. The example shows the transition from 

OKAN I to OKAN II in which the slow-phase velocity is low and small saccades occur. 

Sample frequency fs = 250 samples ⋅ s-1, lowpass cutoff frequency fc = 25 cycles ⋅ s-1, 

M = 7. In trace 3 the slow component of the eye position is plotted. Time windows 

were chosen at ΔT3 = 16 ms and ΔT4 = 80 ms, corresponding to K3 = 4 and K4 = 20 

samples before and after the saccade crosses the threshold. All registrations are 

measured by means of the electromagnetic search coil technique in Squirrel monkeys.  

 

Discussion 
 

If the objective is only to reject saccades from eye movement recordings, the 

algorithm described has been found to be useful. To achieve the components of slow-

phase eye movements, the choice of the parameters ΔT3 and ΔT4 can be made more 

generously, especially when the data during the saccades have to be interpolated by a 

least squares polynomial approximation. A good choice for the time windows is       

ΔT3  ∼  10 ms, ΔT4 < 100 ms. 

Investigations of the saccadic components on the other hand have to take into 

account the misjudgement of a saccade in its representation in the membership 

function. To determine the beginning and the end of saccades exactly, we used the 

membership function defined by threshold crossings to detect the saccades and 
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searched after spreading this function by ΔT3 and ΔT4 for the maximum and minimum 

of the eye position signal while the thus manipulated membership function is zero. As 

a result, the amplitude and duration of each saccade can be determined as well as the 

amplitude of the slow eye movements in OKN to calculate the cumulative eye position, 

for example. Searching for the maximum value of the eye velocity signal while the 

membership function is zero one achieves the peak saccade velocity values. This 

offers the possibility to define the beginning and end of each saccade in another way, 

namely by the values at which the velocity crosses a threshold of, for example, 10% of 

the peak saccade velocity. 

 

An advantage of the described algorithm is that after exploring the suitable 

cutoff frequency of lowpass filtering and choosing the time windows ΔT1 to ΔT4 for a 

special eye position recording method, large amounts of data can be handled 

automatically with the chosen parameters.  

 

Saccade detection was demonstrated with experimental data in which only the 

eye position data were recorded. When eye velocity achieved by means of appropriate 

analog filtering is available, the method can be easily adapted. 

 

The algorithm was demonstrated on stored sampled eye position data as an off-

line procedure. Using hardware digital signal processors, lowpass FIR filtering and 

calculation of derivatives could be calculated during sample intervals. Thus a real-time 

processing of eye recordings becomes possible. In a next step this will be attempted in 

order to display eye movement components or neuronal activity with respect to the 

onset of saccades for example in real time.  
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