

Sentient Objects for Designing and Controlling Service Robots

Jörg Kaiser*, Sebastian Zug*, Michael Schulze*, Carlos Cardeira**, Fernando Carreira***

* Dept. Of Embedded and Operating Systems EOS, Otto-von-Guerike Universität Magdeburg,
{kaiser,zug,mschulze}@ivc.cs.uni-magdeburg.de.

** Instituto Superior Técnico, Technical University of Lisbon,carlos.cardeira@ist.utl.pt
*** Instituto Sup. de Engenharia de Lisboa, Polytechnic Institute of Lisbon,

fcarreira@dem.isel.ipl.pt

Abstract: Services related to healthcare and the support for elderly people become more and more
important. Autonomous or semi-autonomous robots may play an important role in this area. From a control
system point of view these robots are networks of distributed smart components to perceive their
environment and react on it in real time. The problem of developing or extending such a robot often is that
the designer has to start from scratch struggling with low level issues, where reusability of already
designed components would be highly desirable. The paper describes a robot application in the area of a
meals distribution service that combines two design worlds. One is the conventional world of modelling
the functional properties without any structural considerations, the other is the world of cooperating
sentient objects. We explain how the notion of sentient objects will assist the design, simulation and also
later extensions and adaptations of the robot.

1. INTRODUCTION

The usual approach to the design and build a mobile robot
includes algorithm design, simulations, virtual prototyping
testing, etc. During the entire cycle, the necessary tools run in
a centralized design system where all the information is
present. Virtual reality toolboxes allow the visualization and
validation of the proof of the concept. When dealing with
reusability, flexibility and distribution, the conventional
centralized approach is not appropriate. What is needed is an
approach that provides a more flexible, and distributed way
of implementation and also to define encapsulated reusable
components that can be integrated in a new design. The paper
introduces the notion of sentient objects which incorporate
application functions and communicate via a well defined
event interface. We also present an application scenario based
on the I-Merc robot developed in a project dealing with
robotic in health care. We will explain how sentient object
will be used to allow reuse and the distribution of the
processing tasks.

Application Scenario

One of the most important aspects inside hospitals is the
meals distribution service and similar services since the
quality of the food strongly influences the patients’ recovery.
Thus, extreme care is taken not only with regard to the food
preparation but also to the transport between kitchen and
patients. Normally, meals transportation is carried out by
dedicated people that use trolleys specially devised for this
service. A survey to some hospitals allowed us to conclude
that the main drawbacks to traditional transport devices are
their weight and the difficulty in handling them. Some of the
more innovative health centres in the world started using

mobile robots such as the HelpMate (Evans et al. 1992) or
Transcar (Swisslog 2004) to transport different types of
cargos between persons in services.

To increase the quality of the meals services inside health
services, we proposed a more hygienic and efficient meal
transport service, through a dedicated mobile robot, the i-
MERC (Carreira et al. 2006). This robot is able to deliver
personalized diets to patients and return to the washing room
with soiled dishes to be carefully cleaned (see Figure 1).
Although our application scenario is taken from the
healthcare area, it can be extended to an industrial context
where robots are used to carry semi finished products to the
respective machines or deliver parts to respective stations.

Fig. 1. I-Merc virtual prototype

2. Problem statement

 Because of the diversity of applications, robot geometries
and sensor and actuators requirements, every robot is
developed from scratch modelling kinematics, specific
physical sensor characteristics and developing the respective
control programs usually on a very low level of abstraction.
At the moment, there are two approaches to raise the level
when modelling robot behaviour and derive the control
program. On the one side there are approaches using
Matlab/Simulink (Carreira et al. 2006) to define functional
blocks and link these blocks to specify an overall robot
behaviour. This is supported by a graphical interface and a
rich library of functions eases the development of complex
computational tasks like filters and evaluators. Additionally,
sophisticated simulation capabilities enable early validation
of the design. All these tools are based on a centralized model
of control. The final generated code is monolithic and needs a
powerful CPU to be executed. On the other side there is an
emerging class of advanced mobile robotic systems which
exploit the modularity and adaptability of tiny smart sensors
and actuators to build the reactive layers of the system. With
the availability of cheap computing and communication
facilities like microcontrollers with integrated network
access, such a component-oriented approach becomes
attractive. The built-in computational facilities enable the
implementation of a well-defined high-level interface that
does not just provide raw transducer data, but a pre-
processed, application-related set of process variables.
Consequently, the interfaces and the functions of these smart
components may include functions related to overall control,
supervision, and maintenance issues. The reactive level of a
robot thus exhibits a modular system architecture in which
smart autonomous components co-operate to control physical
processes without the need of a central co-ordination facility.
As it is further detailed below, we introduce the notion of a
sentient object to model such components.

At the moment, the worlds of specifying control applications
in Matlab/Simulink and the modelling of applications by
sentient objects are pretty much separated. On the one side
there are mature off-the-shelf development tools around
Matlab/Simulink with the graphical programming tools, on
the other side we observe an emerging world of co-operating
smart components in which application code still is
programmed on a rather low level. In most cases also low
level communication primitives are available only because of
efficiency and resource constraints. The problem currently is
that the powerful modelling and simulation tools mentioned
above cannot be exploited to reflect a distributed architecture
of smart components. In the paper we will present an
integration of these approaches. There are a number of
benefits arising from this work. The designer can define
identifiable, reusable components which have both, a
representation in the system architecture with well defined
interfaces and in the Matlab/Simulink world. There, the
internal algorithms for the input-output behaviour can be
specified and simulated. This enables the validation of such
individual components before they are integrated into a larger
system. Additionally, this approach facilitates simulation of

complex systems by allowing flexible hardware- or software-
in-the-loop techniques.

In the following chapters, we briefly introduce the sentient
object model and the respective communication and
interaction abstractions. Then we will describe how the
simulation and a real robot interact and how sentient object
will support the interaction between real and virtual
components.

2. THE OBJECT AND INTERACTION MODEL

There have been many approaches for mastering the design
process of complex artefacts by modularization and
abstraction. Component-based and platform-based design
concepts are well established examples (Szyperski 1998,
Keutzer et al. 2000). Our approach follows the same goals
providing encapsulated components with well-defined
interfaces. What is highlighted in our concept is the
autonomy of components and anonymity of communication
that is inspired by the needs of large distributed
sensor/actuator networks and supports easy composition and
interaction (Kaiser and Mock 1999, Casimiro et al. 2004).
We propose the notion of sentient objects to model the
cooperating components in the distributed control system.
The concept of a "sentient object" was proposed in the
CORTEX project (Verissimo et al. 2002) and inspired by the
work of Andy Hopper on sentient computing (Hopper, 2000)
that deals with computations which are dependent on the
physical environment in which they are performed. This is
obviously true for an application as described above in which
a robot interacts with its environment through sensors and
actuators. The sentient object model and event-based
communication are tightly related. Event-based
communication (Bacon et al. 2000, Casimiro et al. 2004)
reflects the spontaneous generation of messages and the
respective notification of the receivers in a publish-subscribe
style of interaction (Kaiser and Mock 1999). It should be
noted that the term "event" does not refer to any synchronous
(time-triggered) or asynchronous (occurrence-triggered)
model of communication. Events are typed communication
objects which can be disseminated in either way (Kaiser et al.
2001, Casimiro et al. 2004). The structure of an event is
defined by the tuple <subject, attributes, contents>. The
subject is related to the contents and indicates what type of
information is carried in an event. The subject is used to route
an event to the interested subscribers. A subscriber registers
interest in a subject and is notified whenever a message with
the respective subject is disseminated. The detailed
description and discussion of the publish-subscribe approach
can be found in (Kaiser et al. 2003). An important property is
that a subscriber only has to specify the type of information it
is interested in rather than the source from where this
information has to be delivered. Vice-versa, the publisher
does not have to address a certain receiver of an event
explicitly. Therefore, a dynamic binding between publishers
and subscribes is possible on the basis of subjects and is
supported by the underlying COSMIC middleware. The
attribute field describes context and quality attributes e.g. the
time and location where such an event has been generated
and how long an event will be valid. Finally, the content

carries the payload data. An example of an event produced by
a distance sensor in a mobile robot is given below.

distance_event := <UID, rel_pos., timestamp, validity,
distance>
The UID identifies the subject of the event. "Relative
position", "time stamp", and "validity" are attributes denoting
the position where the distance measurement is performed
(e.g. front or rear of a vehicle) and validity is a speed
dependent attribute indicating how long this value is valid
within defined error bounds. Finally "distance" is the actual
measurement value. Subscribers may be a sentient motor
control object to adapt the speed of the robot and/or an object
which maintains map and position information. For a detailed
description of the event-based COSMIC middleware, the
reader is referred to (Kaiser et al. 2003).

 Sentient objects have an interface that receives events, filters
events according to their subject or attributes and
autonomously decides about the actions to be performed and
the events to be produced (Figure 2). The sentient object
model reflects the needs of encapsulated autonomous
components and mainly differs from the conventional object
model in three respects:

1. The interface of a sentient object is defined in terms
of events that are consumed rather than in terms of a
signature defining the methods which can be
performed by the object.

2. The reaction of an event is performed autonomously
based on an evaluation of the event and its
attributes. The attributes define aspects of the
context in which such an object operates. This is in
contrast to the invocation mechanism in object-
oriented systems.

3. The interaction is spontaneous and in a producer-
consumer style rather than in the client-server style
of object invocations (Kaiser et al. 2001).

Fig. 2. Internal Structure of a Sentient Object

The internal structure reflects the processing of events. It is
composed from a set of filters and processing components.
The filter evaluates the subject and attribute fields of an event
and selects those events which are of interest. The filter
allows specifying events according to a certain location of
origin or the time when they have been generated. The fusion
part is the algorithmic component. Here, the incoming
information is aggregated and combined with the information
of other events. This part can be simple if only one type of
event is considered, e.g. an average temperature is calculated
from incoming temperature events or can be complex if many
multi-modal sensor information coming from distributed
sources have to be considered. The last component of a

sentient object is the event generation part which
disseminates the results of the evaluation process.

Smart sensors and actuators are a special form of sentient
objects. Sensors perceive events from the real-world
environment and producing respective (system-) events for
the system's event layer. Vice versa an actuator consumes
(system-) events and converts it to a real-world event by an
actuation. Smart components therefore constitute the
periphery, i.e. the real-world interface. The reception part of a
smart sensor is an application dependent transducer and the
output produced by an actuator are physical signals rather
than system events. The sentient object model serves as a
high level programming model defining the components and
the interaction structure of the application. To program the
internal sentient object structure, (Fitzpatrick et al., 2002) and
later Biegel and Cahill (Biegel 2006) propose a rather heavy
weight scheme where fusion is based on a Bayesian network
and after identifying composite events, a rule-based inference
scheme evaluates and converts them to output events.
Furthermore, their model incorporates knowledge about the
context in which the sentient object operates and adapts
behaviour accordingly.

We propose to exploit the Matlab/Simulink programming and
simulation environment to program the fusion and evaluation
stages of the sentient object. Furthermore, Matlab/Simulink
gives us the possibility to exploit hardware- and software-in-
the-loop scenarios, i.e. enabling the interaction of real
hardware components with simulated ones.

3. INTEGRATING THE OBJECT CONCEPT IN
MATLAB/SIMULINK

Matlab/Simulink is a standard tool and provides high level
programming and composition of functional blocks.
Matlab/Simulink also allows specifying functional blocks for
low-level communication. For the fusion and evaluation
stages we can exploit the full properties and libraries of
Matlab/Simulink to program the respective algorithms. Thus
we are able to set up all components of a sentient object in a
Matlab/Simulink programming environment. To support the
use in the context of a sentient object, we added function
blocks that realize the event-based communication. This
allows distributing computations to multiple hosts and frees
us from any low-level communication issues. The resulting
blocks can be compiled to the native code of a target platform
and thus we obtain a sentient object as an executable and
reusable software component. Because of the event-based
communication scheme, these components can be easily
combined without changing any internal software e.g.
configuring addresses or adapting to a specific low level
communication protocol. Furthermore, the simulation
facilities of Matlab/ Simulink enable the interaction of real
and simulated sentient objects. Consider the small
experimental setup depicted in Figure 3.

Fig. 3. Interoperability between simulated and real systems

Here a system of distributed smart sensors, actuators and tiny
computing nodes (AT90CAN128) is connected to a PC
running Matlab/Simulink. The different networks, i.e. CAN
and a TCP/IP networks are connected. Because the COSMIC
middleware is running throughout the system, sentient
objects can transparently publish and subscribe events over
network boundaries and gateways. This enables a number of
variants between simulated and real sentient objects. Figure 4
sketches a simple application.

Fig. 4. Application objects

An infrared distance sensor should indicate the proximity of
an obstacle. Because individual measurement results are not
reliable, it will be processed by a complex filter. After
filtering the information it will be send to a visualisation
device. In the experimental hardware setup, this is just a line
of LEDs. For filtering the sensor information, the
"Measurement Filter" is encapsulated in a sentient object. It
subscribes to the events of the distance sensor and provides a
more reliable proximity information in its events than just
taking the events from the sensor carrying the raw distance
data. The visualisation object subscribes to this proximity
event. In this scenario we now can mix real sensors and
simulated ones. In a first stage the entire application may run
on the PC under Matlab/Simulink. Because the components
are sentient objects with the event interface, it is possible to
use the real sensors instead of simulated sensors at later test
and integration phases without major changes. In this way the
parameters of the measurement filter can be adjusted before
the respective object is compiled to the target hardware and
migrated to one of the computing nodes. Any combination of
simulated and directly executed objects is possible.
Eventually, we can derive a standalone version with all

objects running on the target platform. This enables an
incremental design and implementation process and aids
configuration tests considerably. The structure of the sentient
object depicted in figure 2 is represented in Simulink as
follow:

Fig. 5. Stucture of a sentient object in Simulink

The get_event block provides the current data of a channel
indicated with UID_1. The Embedded Matlab Function block
contains the three internal stages of a sentient objects: event
filtering, data processing and event dissemination. According
to figure 4 the data processing is used for a simple averaging
of the last 10 incoming values. The results are published into
the networks by the function block publish_event.

The ease of dynamic composition and interaction of course,
comes not for free. It results in an additional memory and
performance consumption in relation to a statically
configured, simple message passing system which node IDs
and event tags are specified on compile time. This overhead
occurs in the native code for a certain platform and also in the
additional run-time overhead of the MATLAB/Simulink
code.

The current implementation of COSMIC for the AVR with
CAN interface offers a CAN configuration protocol for the
automatic assignment of node IDs, a binding protocol for
mapping of the 64bit UID to a short network-specific name
(event tag), a fragmentation protocol for the transmission of
long messages as well as local event propagations. The
functionality of this proof-of-concept has an overhead of
7kByte Flash and approximately 200 Bytes RAM memory in
comparison with a statically organised system. The
configuration and binding are executed in an initialisation
phase outside of the critical communication path, so the time
requirements of the actual event propagation correspond to a
static implementation.

Considering the overhead for using COSMIC communication
model in a distributed Matlab/Simulink implementation, the
code size and the memory requirements are not a problem
due to the performance of the PC platform. Moreover, the
subscription runs outside the main control cycle as mentioned
before and thus does not result in a run-time overhead. But
also event handling has a very small overhead compared to
raw TCP/IP communication. Incoming TCP/IP messages
carrying events are handled by a call back function which
reads them from the interface buffer, filters the ID for the
subscribed channels and puts them into an associated buffer.
Simulink fetches the most recent messages from there. This

Measurement
Filter

Distance
Sensor LED - Array

graphical
display

embedded
system

Matlab /
Simulink
environment

Measurement
Filter

Distance
Sensor LED - Array

graphical
display

embedded
system

Matlab /
Simulink
environment

holds for any message whether it is a raw TCP/IP message or
a COSMIC event. Hence, there is no temporal overhead when
comparing a statically and a dynamically configured system.
Reading, filtering and writing to a buffer requires around 0.02
ms for a message with a 64 Bit UID, 4 Byte data length value
and 8 Bytes of payload. Of course, the stopwatch timer
functions of Matlab/Simulink are non deterministic and
depends on the PC and other running tasks. Hence, generally
valid statements are here not possible.

4. EXPLOITING THE SCHEME IN THE DESIGN OF A
SERVICE ROBOT

Our approach is used in the development process for a
complex service robot control software. We are aiming at
deriving a stand-alone version for the application by a
stepwise migration of simulated sentient objects to native
code. As described in the introduction, we are developing a
versatile service robot. At the moment, this robot exists as a
simulated version and as a mechanical prototype equipped
with a distributed network of tiny micro-controllers
performing dedicated control functions. Figure 6 shows the
platform and also the distributed control hardware using the
same basic components as the small experimental setup
described above. Additionally, we provide communication
via a standard wireless TCP/IP connection. The robot has
four independent drives that can speed and turn each wheel
independently. This enables very complex movement patterns
generated by sophisticated control algorithms. It is by far
more convenient and cost efficient to develop these mobility
patterns in virtual reality than directly on a physical robot.
Therefore we established a connection to enable
interoperation between the simulation and the real
hardware/mechanical components. We thus are able to use
simulated and real components (in fact the robot can suffer
from severe damage if wrong control signals are applied).
Only when a simulation validates the control algorithm, it is
applied to the real component. Each motor controller is
modelled as sentient object. They subscribe to the motor
command events disseminated by the respective control
instance. Additonally, they publish events representing their
local encoder data. Distance sensors for obstacle recognition
and avoidance disseminate their information as shown in
Figure 6.

Matlab/Simulink
Windows PC

CAN-Bus
WLAN
TCP/IP

Distance
Sensor

Odometric
Sensor for

Driving
(hidden)

Gateway
Linux PC

Odometric
Sensor for
steering

COSMIC

Motordriver
for steering
and driving

4 x Motor
Commands

Σ
Sensor

data

Simulation

Controll

Fig. 6: Interaction between components

Such flexible combination of real sensors with
Matlab\Simulink provides the user a tool chain supporting
each development phase. The first step in the development
cycle for such a control system is the data acquisition of the
step response for each driving unit. Hence, respective ramp
motor commands are published while the encoder signals are
recorded. Based on these values an adequate plant model was
developed with the control engineering tools of
Matlab/Simulink. Afterwards the model was tested in
Simulink for control parameter adaptation. These controllers
for velocity and position were connected to the real robot in a
next development step. This corresponds to a Software in the
Loop scenario facilitating the fine tuning of the controller.
The controller runs in Matlab with a period of 20 ms
resulting from the achievable control cycle. To get to a lower
control period the controllers were transformed into C code
and installed on the microcontroller of each driving unit.
Now the Matlab application was used for monitoring and
calculation of references for the robot. For the development
of semi-automated movements the robot were simulated in 3-
D virtual reality tool. The user steer the robot system by a
joystick. Hence the user controls speed and direction of the
robot in the simulation, for the real robot or for both. The
simulation is used to adapt the joystick behaviour to the user
expectations without any danger for the real system.

In all development steps mentioned before the COSMIC
middleware provides a general and common interface, which
allows a flexible structure for investigations. To achieve our
goals concerning the modular composition of reusable
components, the monolithic block of movement calculation
will be sub-structured into more fine grained components
which can be encapsulated into sentient objects as presented
in the small example above.

5. CONCLUSION

The paper presented an approach to support the development
of complex control applications. As an example, we
described a service robot used in the more and more
important area of health care to deliver meals in a hospital.
We brought together two well known approaches to raise the
level of abstraction when modelling the complex robot
behaviour and derive the control programs. On the one side
there is a standard tool like Matlab/Simulink to define
functional blocks and link these blocks to specify the overall
robot behaviour. This is supported by a graphical user
interface and a rich library of functions eases the
development of complex computational tasks like filters and
evaluators. On the other side we exploit the modularity and
adaptability of a distributed hardware system composed from
smart components like sensors, actuators and computational
devices. With the availability of cheap computing and
communication facilities like microcontrollers with integrated
network access, such a system architecture is not only
feasible but also has advantages in terms of extensibility and
maintainability. We introduced the notion of a sentient object
to model and event-based communication as an appropriate
programming model for such system reflecting the
modularity and composability of the hardware devices. It is
shown in the paper how we integrated this with the standard

Matlab/Simulink development system. As a result we observe
two major advantages. Firstly, we can identify reusable
components with a well defined interface that can easily be
combined because of the event-based interaction model.
Secondly, we achieved interoperability between simulated
components and real hardware. This substantially supports
the development of complex control systems.

6. ACKNOWLEDGEMENTS

This work is part of the project DECOMOR which is
sponsored by the DAAD and GRISCES in a German-
Portuguese collaboration scheme.

REFERENCES

Bacon, J., Moody, K. Bates, J. Hayton, R. Ma, C. McNeil,
A. Seidel, O. and Spiteri. M. (2000) Generic support for
distributed applications. IEEE Computer, 33(3):68-76

Biegel, G. (2006), A Programming Model for Mobile,
Context-Aware Applications, PhD Thesis, Trinity
College Dublin, available as: TCD-CS-2006-59.pdf,
from http://www.tara.tcd.ie/handle/2262/3298

Carreira, F., Canas, T., Silva A., Cardeira, C., (2006) “I-
MERC: A mobile robot to deliver meals inside health
services”, in Proceedings of RAM 2006, the IEEE
International Conference on Robotics, Automation and
Mechatronics, 7 - 9 JUNE 2006, Bangkok, Thailand.

Casimiro, A., Kaiser,J., Verissimo P.,(2004), An
Architectural Framework and a Middleware for
Cooperating Smart Components, ACM Computing
Frontiers conference, CF '04, ISCIA, Italy, 14-16 April
2004

Evans, J.; Krishnamurthy, B.; Barrows, B.; Skewis, T.;
Lumelsky, V. (1992)., Handling real-world motion
planning: a hospital transport robot, Control Systems
Magazine, IEEE, vol. 12, Issue 1, pp 15 – 19

Fitzpatrick, A., Biegel, G., Clarke, S., Cahill, V. (2002),
Towards a Sentient Object model. in Workshop on
Engineering Context-Aware Object-Oriented Systems
and Environments (ECOOSE), Seattle, WA, USA,
November, 2002.

Hopper, A., (2000), The Clifford Paterson Lecture, 1999
"Sentient computing", Philosophical Transactions of the
Royal Society London, 358(1773):2349-2358, Aug.
2000.

Kaiser, J., Mock, M., (1999) Implementing the real-
timepublisher/subscriber model on the controller
areanetwork (CAN). In Proceedings of the
2ndInternational Symposium on Object-oriented Real-
timedistributed Computing (ISORC99), Saint-Malo,
France.

Kaiser, J., Pereira, C.E., Becker L.B., Villela C., Mitidieri C.,
(2001), On Evaluating Interaction and Communication
Schemes for Automation Applications based on Real-
Time Distributed Objects, Proc. of the IEEE 4th
International Symp. on Object-Oriented Real-Time

Distributed Computing (ISORC 2001), Magdeburg,
Germany, May 2001

Kaiser, J., Brudna, C., Mitidieri, C., Pereira C.E., (2003),
COSMIC: A middleware for event-based interaction on
CAN, Proc. 9th IEEE Intern. Conference on Emerging
Technologies and Factory Automation (ETFA2003),
Lisbon, Portugal.

Keutzer K., Malik S., Newton A. R., Rabaey J. M., and
Sangiovanni-Vincentelli A., System Level Design:
Orthogonalization of Concerns and Platform-Based
Design, invited paper, IEEE Transactions on Computer-
Aided Design, Vol. 19, No. 12, December 2000.

Swisslog (2004). Automatic guide vehicles provide bulk
material transport in hospitals.
http://www.swisslog.com/hcs-index/hcs-systems/hcs-
agv.htm. Swisslog, Denver

Szyperski C. (1998) Component Software: Beyond Object-
Oriented Programming, Addison-Wesley

Verissimo P., Cahill, V., Casimiro, A., Cheverst K., Friday
A., Kaiser, J., (2002), CORTEX: Towards Supporting
Autonomous and Cooperating Sentient Entities, in
Proceedings of the European Wireless Conference.
Florence, Italy

